TRANSFORMATIONS PRESERVING THE GRASSMANNIAN

BY WILLIAM C. NEMITZ

1. **Introduction.** For m a positive integer, let E_m be the arithmetic m-space over a commutative field F. Let \mathcal{A}_m be the full linear group of E_m , and let S_{m-1} be the projective space of homogeneous coordinates in E_m . For the rest of the paper, we fix two positive integers n and k, such that k < n. Let $N = \binom{n}{k}$, and let $\Omega(k, n)$ be the k, n Grassmannian variety:

$$\Omega(k,n) \subset S_{N-1}$$
.

Let $\psi(k, n)$ be the set of those nonzero elements x of E_N such that there is some y satisfying

$$x \in y \in \Omega(k, n)$$
.

Let G be the set of nonsingular linear transformations of E_N which keep $\psi(k, n)$ fixed as a set. If C_N is the center of the full linear group of E_N , then G/C_N is the set of projective transformations of S_{N-1} which keep $\Omega(k, n)$ fixed as a set.

Let A(n,k) be the group of all k-compounds [1, Vol. 1, p. 291] of elements of \mathcal{A}_n . Then $A(n,k)/(C_N \cap A(n,k))$ may be thought of as the group of projective transformations of S_{N-1} "induced" by the group of projective transformations of S_{n-1} . Since $A(n,k)/(C_N \cap A(n,k))$ is isomorphic to $(A(n,k)\cdot C_N)/C_N$, and since $A(n,k)\cdot C_N$ is a subgroup of G, $(A(n,k)\cdot C_N)/C_N$ is a subgroup of G/C_N .

The principal results to be proved here are:

1. If $n \neq 2k$, then

$$A(n,k)\cdot C_N=G$$

and thus

$$(A(n,k)\cdot C_N)/C_N=G/C_N.$$

2. If n = 2k, let J denote the "star dual" mapping of $\psi(k, n)$ onto itself (see 2). Since

$$J^2 = (-1)^{(k^2)} I,$$

where I is the identity element of \mathcal{A}_N , J generates a cyclic subgroup of order 2 if k is even, and of order 4 if k is odd. Let \mathcal{J} denote this group. Let \mathcal{K} be the

subgroup of G/C_N made up of cosets of elements of \mathscr{J} . Thus \mathscr{K} is of order 2. Then, in this case,

$$\mathscr{J}\cdot A(n,k)\cdot C_N=G,$$

and thus

$$\mathscr{K} \cdot ((A(n,k) \cdot C_N)/C_N) = G/C_N.$$

2. **Notation.** (For definitions of terms used here and proofs of results given here, see [2].) We shall denote the exterior product of vectors by " \wedge ". Thus x is an element of $\psi(k,n)$ if and only if there is a linearly independent set of k elements of $E_n, x_1, x_2, x_3, \dots, x_k$; and

$$x = x_1 \wedge x_2 \wedge x_3 \wedge \cdots \wedge x_k$$
.

For $A \in \mathcal{A}_n$, let A^k be the k-compound of A. Thus if

$$x = x_1 \wedge x_2 \wedge x_3 \wedge \cdots \wedge x_k$$

then

$$A^k x = Ax_1 \wedge Ax_2 \wedge Ax_3 \wedge \cdots \wedge Ax_k.$$

For $E \subset E_m$, let L(E) be the subspace of E_m spanned by E. If $x \in \psi(k, n)$, such that

$$x = x_1 \wedge x_2 \wedge x_3 \wedge \cdots \wedge x_k$$

let

$$\pi(x) = L(\{x_1, x_2, x_3, \dots, x_k\}).$$

For any positive integer m, let

$$\mathcal{N}(m) = \{1, 2, 3, \dots, m\}.$$

For t a positive integer, $t \leq m$, let

$$P(m,t) = \{p: p = \{p_1, p_2, p_3, \dots, p_t\}, p_i \in \mathcal{N}(m) \text{ for } i \in \mathcal{N}(t), \text{ and }$$

$$p_1 < p_2 < p_3 < \cdots < p_t$$
.

For $p \in P(m, t)$, let c(p) be that element of P(m, m - t) such that

$$p \cup c(p) = \mathcal{N}(m)$$
.

For x an element of $\psi(k,n)$, *x is that element of $\psi(n-k,n)$ defined by

$$(*x)_q = \varepsilon(q) \, x_{c(q)},$$

where q is any element of P(n, n-k), and $\varepsilon(q)$ is -1 to the power of the parity of the permutation $(q_1, q_2, q_3, \dots, q_{n-k}, (cq)_1, (cq)_2, (cq)_3, \dots, (cq)_k)$. Let J be that mapping of $\psi(k, n)$ onto $\psi(n-k, n)$ defined by

$$J(x) = *x$$
.

Then J can be extended to a nonsingular linear mapping of E_N onto itself.

Since k < n, we may consider E_{k+1} as a subspace of E_n , and $\psi(k, k+1)$ as a subset of $\psi(k, n)$. On occasion, we shall find it necessary to use the *-dual of a vector in $\psi(k, k+1)$ "relative to E_{k+1} ." That is, for x an element of $\psi(k, k+1) \subset \psi(k, n)$,

$$(*_{k+1}x)_i = (-1)^{i-1}x_{c(i)}$$
, where $c(i) = \mathcal{N}(k+1) - \{i\}$, if $1 \le i \le k+1$;

and

$$(*_{k+1}x)_i = 0$$
, if $i > k+1$.

Then $*_{k+1}x \in E_{k+1} \subset E_n$, and

$$L(*_{k+1}x) = (\pi(x))^{\perp_{k+1}},$$

where \perp_{k+1} denotes the orthogonal complement relative to E_{k+1} .

For $i \in \mathcal{N}(m)$, let e_i be that element of E_m whose jth component is δ_{ij} . For $p \in P(n,k)$, let

$$e_p = e_{p_1} \wedge e_{p_2} \wedge e_{p_3} \wedge \cdots \wedge e_{p_k}$$

Then the set $\{e_n: p \in P(n,k)\}$ is a basis for E_N .

For $A \in G$, and $p \in P(n, k)$, let $A_p = Ae_p$. Then $A_p \in E_N$, and it is the pth column vector of the matrix of A. For any $q \in P(n, k-1)$,

$$\dim\left(\bigcap \pi(e_p)\right) = k - 1,$$

the intersection being taken over all $p \in P(n, k)$ such that $q \subset p$; and

$$\dim(L(\lbrace e_n: q \subset p \in P(n,k)\rbrace)) = n-k+1.$$

So if $A \in G$, and $q \in P(n, k-1)$, and if

$$M = A(L(\lbrace e_n: q \subset p \in P(n,k)\rbrace)),$$

then dim M = n - k + 1, and M is spanned by the set $\{A_p : q \subset p \in P(n, k)\}$. Furthermore, for $p \in P(n, k)$, $A_p \in M$ if and only if $q \subset p$.

Since we have excluded the zero vector from $\psi(k, n)$, no linear subspace of E_N is contained in $\psi(k, n)$. However, if M is a linear subspace of E_N , we shall say $M \subset \psi(k, n)$ if and only if for $x \in M$, if $x \neq 0$, then $x \in \psi(k, n)$.

- 3. **Principal results.** The principal results may now be stated in the following two theorems.
- 3.1. THEOREM. If $n \neq 2k$, and $A \in G$, then there exists $C \in C_N$ and $B \in \mathscr{A}_m$ such that

$$A = CB^k$$

3.2. THEOREM. If n = 2k, and if $A \in G$, then there exists $C \in C_N$ and $B \in \mathcal{A}_n$ such that either

$$A = CB^k$$

or

$$A = CJB^k.$$

The proofs of these theorems depend on the following three lemmas, which will be proved in §§4 and 5.

3.3. Lemma. For m an integer, $2 \le m \le N$, let M be a subspace of E_N , with dim M = m, such that there exists a set $\{x_1, x_2, x_3, \dots, x_m\} \subset \psi(k, n)$ and $\{x_1, x_2, x_3, \dots, x_m\}$ spans M. Then,

1. if

$$\dim\bigcap_{i=1}^m \pi(x_i)=k-1,$$

then $M \subset \psi(k,n)$,

$$\dim \bigcap_{x \in M} \pi(x) = k - 1,$$

and

$$\dim L(\{\pi(x)\colon x\in M\})=k+m-1;$$

2. if

$$\dim L(\{\pi(x_i): 1 \le i \le m\}) = k+1,$$

then $M \subset \psi(k,n)$, $m \leq k+1$,

$$\dim \bigcap_{x \in M} \pi(x) = k - m + 1,$$

and

$$\dim L(\{\pi(x): x \in M\}) = k + 1.$$

In either case, M is the set of all k-vectors of k dimensional subspaces of E_n which contain $\bigcap_{x \in M} \pi(x)$ and are contained in $L(\{\pi(x): x \in M\})$.

3.4. LEMMA. For m an integer, $2 \le m \le N$, let M be a subspace of E_N , with dim M = m, and assume that $M \subset \psi(k,n)$. Let $\{x_1, x_2, x_3, \dots, x_m\}$ be any spanning set of M. Then either

$$\dim \bigcap_{i=1}^m \pi(x_i) = k-1,$$

or

dim
$$L(\{\pi(x_i): 1 \le i \le m\}) = k + 1$$
.

3.5. LEMMA. If $A \in G$, and if, for each $q \in P(n, k-1)$,

$$\dim \bigcap \pi(A_p) = k - 1,$$

the intersection being taken over all p such that

$$q \subset p \in P(n,k)$$
,

then there exists $C \in C_N$ and $B \in \mathcal{A}_n$ such that

$$A = CB^k$$

Proof of Theorem 3.1 assuming Lemmas 3.3, 3.4, and 3.5. First assume that n > 2k. For $q \in P(n, k-1)$, let M(q) be the subspace of E_N spanned by the set $\{A_p: q \subset p \in P(n,k)\}$. Then $M(q) \subset \psi(k,n)$, and $\dim M(q) = n-k+1$. But n-k+1 > k+1. So by 3.3 and 3.4,

$$\dim \bigcap \pi(A_p) = k - 1,$$

the intersection being taken over all p such that

$$q \subset p \in P(n,k)$$
.

The result follows from 3.5. Now assume that n < 2k. Then for $x \in \psi(n-k,n)$, $JAJ^{-1}(x) \in \psi(n-k,n)$. Hence there exists $C \in C_N$ and $B \in \mathcal{A}_n$ such that

$$JAJ^{-1} = CB^{n-k}$$

So

$$A = CJ^{-1}B^{n-k}J.$$

By the Laplace expansion of a determinant,

$$J^{-1}B^{n-k}J = (\det B)I(B^{-T})^k,$$

where -T denotes inverse transpose. Hence

$$A = C(\det B) I(B^{-T})^k.$$

This completes the proof.

Proof of Theorem 3.2 assuming Lemmas 3.3, 3.4, and 3.5. We first show that if

$$\dim L(\{\pi(A_n): q' \subset p \in P(n,k)\}) = k+1,$$

for some $q' \in P(n, k-1)$, then

$$\dim L(\{\pi(A_n): q \subset p \in P(n,k)\}) = k+1,$$

for every $q \in P(n, k-1)$. It suffices to consider $q' = \{1, 2, 3, \dots, k-1\}$ and to assume that

$$\dim L(\{\pi(A_p): q' \subset p \in P(n,k)\}) = k+1.$$

Select $q \in P(n, k-1)$, so ordered that if $q_i \in q'$, then $q_i = i$. Let $q'' = \{2, 3, 4, \dots, k-1, q_1\}$. We will show that

$$\dim L(\lbrace \pi(A_n): q'' \subset p \in P(n,k)\rbrace) = k+1.$$

If $q_1 = 1$, there is nothing to prove. So assume that $q_1 \neq 1$. Let $p'' = \{1, 2, 3, \dots, k-1, q_1\}$, and let

$$M' = L(\{A_n: q' \subset p \in P(n,k)\}),$$

and

$$M'' = L(\lbrace A_p : q'' \subset p \in P(n,k)\rbrace).$$

Then

$$M'\cap M''=L(A_{p''}),$$

so

$$\dim(M' \cap M'') = 1$$
.

Now let $Q' = L(\{\pi(A_p): q' \subset p \in P(n,k)\})$, and $Q'' = \bigcap \pi(A_p)$, the intersection being taken over all $p \in P(n,k)$ such that $q'' \subset p$, and assume that dim Q'' = k-1. Then

$$Q'' \subset \pi(A_{p''}) \subset Q'.$$

So the set of all $y \in \psi(k, n)$ such that $Q'' \subset \pi(y) \subset Q'$ is a subspace of $M' \cap M''$, but by [1, Vol. 2, Chapter XIV, Theorem I], the dimension of this subspace is 2. So $\dim(M' \cap M'') \ge 2$. This is a contradiction. So by Lemma 3.4,

$$\dim L(\lbrace \pi(A_n): q'' \subset p \in P(n,k)\rbrace) = k+1.$$

Continuing in this manner, working with one element of q at a time, we conclude that

$$\dim L(\{\pi(A_p): q \subset p \in P(n,k)\}) = k+1.$$

Hence either A or JA satisfies the conditions of Lemma 3.5, so the result follows from the fact that $J^2 = (-1)^{(k^2)}I$.

4. Linear subspaces contained in $\psi(k, n)$. Lemmas 3.3 and 3.4 describe the linear subspaces of E_N which are contained in $\psi(k, n)$ in the sense of 2. In this section we give proofs of these two lemmas.

Proof of Lemma 3.3. Select a set $\{x_1, x_2, x_3, \dots, x_m\} \subset \psi(k, n)$, such that $\{x_1, x_2, x_3, \dots, x_m\}$ spans M, and assume that

$$\dim \bigcap_{i=1}^m \pi(x_i) = k-1.$$

Then without loss of generality, we may assume that

$$x_i = e_1 \wedge e_2 \wedge e_3 \wedge \cdots \wedge e_{k-1} \wedge e_{k+i-1},$$
 for $i = 1, 2, 3, \cdots, m$.

Now let $x \in M$. Then there exist $a_1, a_2, a_3, \dots, a_m$, elements of F, such that $x = \sum_{i=1}^m a_i x_i$. So

$$x = e_1 \wedge e_2 \wedge e_3 \wedge \cdots \wedge e_{k-1} \wedge \left(\sum_{i=1}^m a_i e_{k+i-1}\right).$$

Hence $M \subset \psi(k,n)$, and consists of those k-vectors of k-spaces containing $L(\{e_1,e_2,e_3,\cdots,e_{k-1}\})$, and contained in $L(\{e_1,e_2,e_3,\cdots,e_{k+m-1}\})$. Now assume that

$$\dim L(\{\pi(x_i): 1 \le i \le m\}) = k + 1.$$

Then without loss of generality, we may assume that

$$\pi(x_i) \subset L(\{e_1, e_2, e_3, \dots, e_{k+1}\})$$

for $i=1,2,3,\cdots,m$. Hence the x_i may be thought of as k-vectors in E_{k+1} . So if $x \in M$, $x = \sum_{i=1}^{m} a_i x_i$, for suitable elements a_i of F, then x is a k-vector in E_{k+1} . Hence $M \subset \psi(k,n)$, and

$$\dim L(\{\pi(x): x \in M\}) = k + 1.$$

Also, the set $\{*_{k+1}x_i: 1 \le i \le m\}$ spans an *m*-space of E_{k+1} , so $m \le k+1$, and since $L(*_{k+1}x_i) = (\pi(x_i))^{\perp_{k+1}}$,

$$\dim \bigcap_{i=1}^m \pi(x_i) = k - m + 1.$$

But for $x \in M$, $L(*_{k+1}x) \subset L(\{*_{k+1}x_i: 1 \le i \le m\})$, and so

$$\bigcap_{i=1}^m \pi(x_i) \subset \pi(x).$$

Hence

$$\dim \bigcap \pi(x) = k - m + 1,$$

the intersection being taken over all $x \in M$. This completes the proof.

Proof of Lemma 3.4. Since $M \subset \psi(k,n)$, the plane spanned by x_i and x_j lies in $\psi(k,n)$, for $i \neq j$, $i,j = 1,2,3,\cdots,m$. By [1, Vol. 2, Chapter XIV, Theorem I],

$$\dim(\pi(x_i)\cap\pi(x_i))=k-1.$$

So, without loss of generality, we may assume that

$$\pi(x_1) = L(\{e_1, e_2, e_3, \dots, e_k\}),$$

and

$$\pi(x_2) = L(\{e_2, e_3, e_4, \dots, e_{k+1}\}).$$

Now assume that there is some x_i , say x_3 , such that

$$\pi(x_1) \cap \pi(x_2) \subset \pi(x_3)$$
.

Then we may assume that $\pi(x_3) = L(\{e_2, e_3, e_4, \dots, e_k, e_{k+2}\})$. Now assume that there is some x_i , such that $\pi(x_i)$ does not contain $\pi(x_1) \cap \pi(x_2)$. Since

$$\dim(\pi(x_i)\cap\pi(x_1))=\dim(\pi(x_i)\cap\pi(x_2))=k-1,$$

we can choose a spanning set $\{u_1, u_2, u_3, \dots, u_k\}$ for $\pi(x_i)$ such that $u_i \in \pi(x_1)$, for $i = 1, 2, 3, \dots, k-1$, and $u_k \in \pi(x_2)$. Hence

$$\pi(x_i) \subset L(\{e_1, e_2, e_3, \dots, e_{k+1}\}),$$

and so

$$\dim(\pi(x_i) \cap \pi(x_3)) < k-1.$$

But this contradicts the fact that $\dim(\pi(x_i) \cap \pi(x_3)) = k-1$. So

$$L(\lbrace e_2, e_3, e_4, \cdots, e_k \rbrace) \subset \pi(x_i),$$

and hence

$$\dim \bigcap_{i=1}^m \pi(x_i) = k-1.$$

Thus far, we have shown that if any three of the spaces $\pi(x_1), \pi(x_2), \pi(x_3), \dots, \pi(x_m)$ intersect in a k-1 space, then they all intersect in a k-1 space. Now assume that no three of these spaces intersect in a k-1 space. Hence, for $i \neq 1, 2, \pi(x_i)$ does not contain $\pi(x_1) \cap \pi(x_2)$. So, as before, $\pi(x_i) \subset L(\{e_1, e_2, e_3, \dots, e_{k+1}\})$, and so

$$\dim L(\{\pi(x_i): 1 \leq i \leq m\}) = k+1.$$

5. Proof of Lemma 3.5. The proof is in two parts.

PART 1. We first prove that, given the assumptions of the lemma, there is a set $\{x_1, x_2, x_3, \dots, x_n\} \subset E_n$, such that

(1)
$$\pi(A_p) = L(\{x_{p_1}, x_{p_2}, x_{p_3}, \dots, x_{p_k}\})$$

for any $p \in P(n, k)$. The proof is by induction on the number of vectors which can be found satisfying (1). First note that the assumption that for any $q \in P(n, k-1)$, the dimension of the intersection of the spaces $\pi(A_p)$ for $q \subset p \in P(n, k)$ is k-1, implies that to each $q \in P(n, k-1)$ there is assigned in a one-to-one manner, a k-1 space S(q) of E_n , such that

$$S(q) = \pi(A_p) \cap \pi(A_r),$$

for any $p \in P(n,k)$, and $r \in P(n,k)$, such that $p \neq r$, and $q \subset p \cap r$. Obviously, there is a set $\{x_1, x_2, x_3, \dots, x_k\} \subset E_n$ such that if $p = \{1, 2, 3, \dots, k\}$, then (1) is true. So, assume that there exists a set $\{x_1, x_2, x_3, \dots, x_t\} \subset E_n$, for some integer t, $k \leq t \leq n-1$, such that (1) holds for any $p \in P(t,k)$. Let $p = \{1, 2, 3, \dots, k-1, t+1\}$. Then there exists an $x_{t+1} \in E_n$ such that (1) holds for this p. Let q be an element of P(t, k-1), so ordered that if $q_s \in p$, then $q_s = s$. Let $\bar{p} = q \cup \{t+1\}$. We wish to show that (1) holds for \bar{p} . We now define a family of elements of P(n,k) as follows:

$$p(0) = p,$$

$$p(j) = (p(j-1) - \{i\}) \cup \{q_i\},$$

for $j=1,2,3,\cdots,k-1$. We will show by induction on j, that (1) holds for each p(j). This will complete the induction on t, since $\bar{p}=p(k-1)$. Obviously, (1) is true if j=0. Assume that, for some j, $0 \le j < k-1$, (1) holds for p(j). If $q_{j+1}=j+1$, then (1) holds for p(j+1). So assume that $q_{j+1} \notin p$. We also assume that $q_{j+1} \ne k$. Let

$$p' = (p(j+1) - \{t+1\}) \cup \{k\},$$

$$r = (p(j+1) - \{t+1\}) \cup \{j+1\},$$

$$Z(i) = L(\{x_1, x_2, x_3, \dots, x_i\}),$$

for i equal t or t + 1. Then

$$\pi(A_{p(j+1)}) \cap Z(t) = \pi(A_{p'}) \cap \pi(A_{p(j+1)}) = S(p' \cap p(j+1))$$

$$= \pi(A_{p'}) \cap \pi(A_{p}) = L(\{x_{p(j+1)}, x_{p(j+1)}, x_{p(j+1)}, \dots, x_{p$$

and

$$\pi(A_{p(j)}) \cap \pi(A_{p(j+1)}) = S(p(j) \cap p(j+1)).$$

Since $p' \cap p(j+1) \neq p(j) \cap p(j+1)$,

$$\dim(\pi(A_{p(j+1)}) \cap \pi(A_{p(j)}) \cap Z(t)) < k-1.$$

Also, since Z(t+1) is spanned by $\pi(A_{p(j)}) \cup Z(t)$,

$$\dim(\pi(A_{p(j+1)}) \cap Z(t+1)) = k,$$

and hence

$$\pi(A_{p(j+1)}) \subset Z(t+1).$$

Therefore, (1) holds for p(j+1). If $q_{j+1} = k$, interchange k and j+1 in the argument above. This completes the proof of Part 1.

PART 2. As a consequence of Part 1, there is an $H \in \mathcal{A}_n$ such that AH^k is diagonal. Hence we can assume that A is diagonal.

$$A = \operatorname{diag}(a_n), \quad \text{for } p \in P(n, k).$$

Now select any two integers g and h, such that $1 \le g$, $h \le n$, and $g \ne h$. Let q and r be two elements of P(n, k-1), neither of which contains g or h. Let

$$p = q \cup \{g\},$$

$$p' = q \cup \{h\},$$

$$\bar{p} = r \cup \{g\},$$

and

$$\bar{p}'=r\cup\{h\}.$$

We want to show that

$$a_p a_{\bar{p}} = a_{p'} a_{\bar{p}}.$$

As in Part 1, we construct two families of elements of P(n,k).

$$p(0) = p,$$

$$p(j) = (p(j-1) - \{q_i\}) \cup \{r_i\},$$

for $j = 1, 2, 3, \dots, k-1$ and

$$p'(0) = p',$$

$$p'(j) = (p'(j-1) - \{p'_i\}) \cup \{r_i\},$$

for $j = 1, 2, 3, \dots, k-1$. Here we regard the p(j) and p'(j) as so ordered that g or h is always the last element. It suffices to prove that

$$(2) a_{p(j-1)} a_{p'(j)} = a_{p(j)} a_{p'(j-1)}$$

for $j=1,2,3,\cdots,k-1$. Let $y=e_{p(j-1)}+e_{p(j)}+e_{p'(j)}+e_{p'(j-1)}$. Then $y\in\psi(k,n)$. Therefore $Ay\in\psi(k,n)$. Thus Ay satisfies the Plucker identities, one of which may be written as (2), since only these four components of Ay are not zero. Now let

$$b(g,h)=a_p/a_{p'}.$$

Then b(g,h) is independent of q, and for any three integers g, h, and s, $1 \le g, h, s \le n$,

$$b(g,s) = b(g,h) b(h,s).$$

Therefore, for $r \in P(n, k)$, and $r' = \{1, 2, 3, \dots, k\}$,

$$a_r = \prod_{i=1}^k b(p_i, i) a_{r'},$$

where \prod here indicates product. So if $B \in \mathcal{A}_n$

$$B = \operatorname{diag}(b(1,1), b(2,1), b(3,1), \dots, b(n,1)),$$

and

$$\lambda = \left(\prod_{i=1}^k b(1,i)\right) a_{r'},$$

then

$$A = \lambda I B^k$$

This completes the proof of Lemma 3.5.

- 6. The orthogonal group. In this section we let F be the field of real numbers. For m a positive integer, let \cdot denote the usual inner product of E_m , and |v| the usual norm. For $A \in \mathcal{A}_m$, let $A^{(i)}$ denote the *i*th row vector of the matrix of A.
 - 6.1. Lemma. For m and A as above, if there exists a set $T \subset E_m$ such that
 - 1. $e_i \in T$ for all integers $i, 1 \leq i \leq m$,
 - 2. $A^{(i)} \in T$ for all integers $i, 1 \le i \le m$,
 - 3. for all $v \in T$, $Av \in T$, and $A^{-1}v \in T$,
 - 4. for all $v \in T$, |Av| = |v|,

then A is orthonormal.

Proof. Since, for $v \in T$, $A^{-1}v \in T$, we have that

$$|v| = |AA^{-1}(v)| = |A^{-1}(v)|.$$

Now let $x_i = A^{-1}e_i$ for any integer i, $1 \le i \le m$. Then $|x_i| = 1$, and $Ax_i = e_i$. Hence $A^{(i)} \cdot x_i = 1$, and thus $|A^{(i)}| \ge 1$. But

$$|AA^{(i)}|^2 = \sum_{i=1}^m (A^{(i)} \cdot A^{(i)})^2 = A^{(i)} \cdot A^{(i)}.$$

So

$$\sum_{j=1,j\neq i}^{m} \left(A^{(j)} \cdot A^{(i)} \right)^{2} = A^{(i)} \cdot A^{(i)} (1 - A^{(i)} \cdot A^{(i)}).$$

Hence $|A^{(i)}| \le 1$. Thus, for any integers i and j, $1 \le i$, $j \le m$, $i \ne j$, $|A^{(i)}| = 1$, and $A^{(i)} \cdot A^{(j)} = 0$. Hence A is orthonormal.

6.2. THEOREM. Let $A \in G$ such that for all $v \in \psi(k, n)$, |Av| = |v|. Then A is orthonormal, and there exist $B \in \mathcal{A}_n$, B orthonormal, and $C \in C_N$, $C^2 = I$, such that either $A = CB^k$, or $A = CJB^k$.

Proof. This follows immediately from the previous lemma.

REFERENCES

- 1. W. V. D. Hodge and D. Pedoe, *Methods of algebraic geometry*, The University Press, Cambridge, 1947-1952.
- 2. N. Bourbaki, Eléments de mathématique, II, Chapitre 3, Algèbre multilinéaire, Hermann, Paris, 1958.

SOUTHWESTERN AT MEMPHIS, MEMPHIS, TENNESSEE